Advanced Techniques in Hip Arthroscopy

*Christopher M. Larson, MD
*Carlos A. Guanche, MD
*Bryan T. Kelly, MD
*John C. Clohisy, MD
Anil S. Ranawat, MD

Abstract
The indications for hip arthroscopy are expanding as the understanding of hip disease increases. Improved instrumentation and technical skills also have facilitated the ability to treat some hip disorders arthroscopically. Femoroacetabular impingement (FAI) is increasingly recognized as a disorder that can lead to progressive intra-articular chondral and labral injury. Although FAI is usually treated through an open approach, limited-open and all-arthroscopic approaches have been described. Various arthroscopic techniques allow treatment of labral and acetabular pathology as well as peripheral compartment femoral head-neck abnormalities. Early outcomes of limited-open and all-arthroscopic treatment of FAI are only beginning to be reported but appear to compare favorably with those of open dislocation procedures. Although labral tears traditionally have been treated with simple débridement, concerns have been raised about the consequences of removing the labrum. Modified portal placement and hip-specific suture anchors are now being used in an effort to repair some labral tears. Snapping hip disorders typically are treated nonsurgically. For persistent symptoms, arthroscopic release is successful, compared with open release, and allows additional evaluation of the hip joint during surgery.

Diagnosis and management of traumatic and atraumatic hip instability continue to be challenging. Hip arthroscopy has been shown to be effective in the treatment of hip instability in some patients. The extra-articular peritrochanteric space is receiving increased attention. The arthroscopic anatomy has been well defined, but the treatment of greater trochanteric pain syndrome and arthroscopic repair of abductor tendon tears are only beginning to be reported. Improved techniques and longer-term outcomes studies will further define the optimal role of hip arthroscopy.

Femoroacetabular Impingement
FAI is the result of abnormal contact between the proximal femur and the acetabular rim.1-3 The abnormality can occur on the femoral or the acetabular side or both. The two primary mechanisms of FAI are pincer and cam impingement.

Pincer impingement results from contact between an abnormal acetabular rim and a normal femoral head-neck junction; cam
Impingement is the result of contact between an abnormal femoral head-neck junction and a normal acetabulum. Pincer and cam impingement are discussed in detail in chapter 21.

Patients with FAI usually are in the second, third, or fourth decade of life. They typically describe groin pain or deep lateral pain exacerbated by strenuous activity. Pain often occurs with prolonged sitting and sometimes when the patient rises from a chair, moves in or out of a vehicle, or sits with the legs crossed in a figure-of-4 position. Except for pain while sitting, pain at rest is unusual early in the disease and in the absence of significant degenerative changes. Patients frequently report a diagnosis of low back disease, recurrent hip flexor strain, sports hernia, or a history of unsuccessful surgery unrelated to the hip joint.

The physical examination typically reveals limitations in hip flexion and internal rotation. A flexion, abduction, and external rotation test often reveals an increased distance from the examination table to the lateral aspect of the knee and elicits groin pain on the symptomatic side. With the patient supine, the anterior or posterior impingement test can elicit groin pain from anterolateral or posterolateral impingement, respectively. In the anterior impingement test, the hip is flexed at least 90°, with internal rotation and adduction. The posterior impingement test involves hip extension and external rotation.

Plain radiographs must be critically analyzed to identify the areas of impingement. Typically, the radiographs include an AP view with the coccyx centered over the pubic symphysis and with a 2- to 5-cm distance between the sacrococcygeal junction and the pubic symphysis. Local anterior overcoverage (retroversion) of the acetabulum is indicated by a crossover sign and a posterior wall sign. Global acetabular overcoverage (coxa profunda) is present when the ilioschial line lies lateral to the floor of the acetabulum or teardrop. A detailed discussion of the radiographic features of femoracetabular impingement is presented in chapters 21 and 23. FAI is nonsurgically treated by avoiding of painful activities such as deep hip flexion, aggressive hip flexion-based weight training, and athletic activities that could cause pain. Although relatively pain-free core strengthening can be used for these patients, aggressive attempts at restoring hip flexion and internal rotation should be avoided because they typically lead to a worsening of symptoms. Unfortunately, patients often continue to have pain during activities of daily living or are unwilling to refrain from painful athletic endeavors.

Joint-preserving surgery is considered for patients with FAI who have minimal degenerative changes in the hip. The procedure involves correcting the underlying structural deformity. The associated labral and articular cartilage disease is treated by trimming prominent areas of acetabular overcoverage, with concomitant labral detachment and refixation or débridement, or recountouring aspherical areas of the femoral head-neck junction. The most well-established approach is through an open dislocation. Hip arthroscopy using a limited-open approach without dislocation and an all-arthroscopic approach have recently been described. The indications for open and arthroscopic treatment have not been well defined, and the decision should be based on the pattern of impingement and the experience of the surgeon.

One surgical strategy for treating FAI combines hip arthroscopy with a limited anterior approach to the hip. This technique is most suitable for focal cam impingement or localized pincer impingement with excessive anterolateral femoral head coverage. It is less suitable for a hip with a circumferential or complex impingement pattern that cannot be completely reached using an anterior approach. This procedure can be used by surgeons who are making a transition from an open dislocation approach to an all-arthroscopic approach.

The surgical procedure begins with hip arthroscopy to treat acetabular labral and articular cartilage pathology, as well as associated synovitis and any other intra-articular abnormalities. A limited anterior approach to the hip is then used to address structural impingement abnormalities. The incision should begin 1 cm inferior to the anterosuperior iliac spine and should extend 8 to 10 cm distally. The tensor fascia is incised over the muscle, the tensor fascia lata muscle is reflected laterally, and the sartorius is reflected medially. The rectus femoris tendon is identified, and it can be released to gain wide exposure of the anterior hip capsule. An I-shaped arthrotomy is made for joint access, and the capsular flaps are reflected medially and laterally. Using the more normal anteromedial head-neck junction as a guide, osteochondroplasty of the anterior, anterolateral, and lateral femoral head-neck junction is performed. Care is taken to avoid extending the osteochondroplasty too far posteriorly because the retinacular vessels run along the posterolateral aspect of the femoral neck. After the bone resection, improvement in the hip range of motion can be evaluated by direct
Figure 1 A, Arthroscopic view of the left hip of a 17-year-old soccer player, taken from the anteroparatrochanteric portal. The femoral head is to the left, and the acetabulum is to the right. The patient has peripheral labral ecchymosis consistent with pincer impingement (white arrow) and disruption of the labrochondral junction with early chondral delamination consistent with cam impingement (black arrow). B, The labrum (black arrow) after it was detached with a beaver blade from the acetabular rim through the area of undersurface tearing. Rim trimming to the acetabular rim (white arrow) was performed with an arthroscopic burr. C, The labrum after it was repaired and refixed to the acetabulum using two suture anchors (solid arrows) and traction was released. The normal sealing function of the labrum against the femoral head has been restored (dashed arrows).

observation, palpation, or fluoroscopy. If acetabular-side correction is needed, the hip can be distracted to improve access to the acetabular rim. The labrum can be repaired or further detached to allow osteoplasty of the acetabular rim followed by reattachment of the acetabular labrum. The anterior capsular flaps and rectus femoris tendon are then repaired.

All-arthroscopic approaches for treating FAI have been described and are associated with a steep learning curve for the surgeon. The procedure can be performed with the patient in the supine or lateral position after an intrasurgical “around the world” fluoroscopic evaluation is used to determine the extent of cam impingement. Several views are taken: AP, neutral and maximal internal-external hip rotation; frog-leg lateral, with 40° hip flexion and external rotation; and cross-table lateral, with 15° internal rotation. The anterolateral and anterior arthroscopic portals are typically used. The anterior portal is created 1 to 2 cm more distal than is customary to allow better access to the acetabulum for rim trimming and labral refixation.

Any acetabular overcoverage is corrected first, with the extremity in traction. Intra-articular findings consistent with pincer impingement include extension of the periphery of the acetabulum well beyond the labrochondral junction and associated peripheral labral ecchymosis, labral flattening, labral maceration, or labral ossification. If pincer impingement and labral disease are present, an arthroscopic knife can be used to detach the labrum from the rim, beginning at the anterior portal and extending along the area of labral damage and acetabular chondrosis to create a bucket-handle tear. A 5.5-mm burr is used to trim the rim 5 to 10 mm (based on presurgically determined center-edge angles) to establish a center-edge angle of approximately 25° to 30°. To treat any posterior areas of acetabular impingement, a posterolateral portal can be created to allow predictable trimming of the posterior and inferior rims. Microfracture is performed if full-thickness acetabular chondral defects are present after rim trimming. If necessary to refix the labrum, two to five suture anchors are typically placed just off the rim. A mattress suture technique can be used to preserve the labrum’s sealing function (Figure 1).

Cam impingement is treated through a capsulectomy or an extended capsulotomy from the anterior portal to the posterolateral portal. The anterolateral portion of the femoral head-neck junction is brought into view with hip flexion. Intrasurgical fluoroscopy can be judiciously used to verify the position and extent of the osteoplasty. A 5.5-mm burr is used beginning at the anteromedial femoral head-neck junction, which can be reached with flexion and external rotation. The osteoplasty is continued superior with hip internal rotation, and the lateral neck is further recontoured with increased hip flexion to avoid a cookie-bite appearance. Repeated external rotation is used to evaluate the amount of resection. Resection of more than 30% is rarely needed and should be avoided to prevent postsurgical femoral neck fracture.
Figure 2 A, A presurgical AP radiograph showing a decreased femoral head-neck offset (arrow) and a positive crossover sign (outline) in the right hip, consistent with cam and pincer impingement, respectively. The patient had undergone an open procedure on the left hip that was complicated by postoperative trochanteric nonunion. B, A postoperative AP radiograph showing an improved femoral head-neck offset (arrow) and absence of the crossover sign (outline) after arthroscopic femoral osteochondroplasty and acetabular rim trimming. C, A presurgical frog-leg lateral radiograph consistent with cam impingement (arrow). D, A postoperative frog-leg lateral radiograph showing arthroscopic recontouring of the femoral head-neck junction (arrow).

Extension of the hip and maximal internal rotation can bring more superior areas of impingement into view. To preserve the retinacular vessels, care must be taken to avoid continuing the osteoplasty too far posterolateral on the superior femoral neck. The osteoplasty is continued until a normal head-neck offset can be seen on all “around the world” evaluation views. The adequacy of bony resection is confirmed by direct arthroscopic observation of an impingement-free range of hip motion through maximal flexion, adduction, abduction, and internal and external rotation (Figure 2).

Early outcomes of the arthroscopic and limited-open approach and the all-arthroscopic approach are being reported. At 1- to 3-year follow-up, both approaches appear to offer results comparable to those of open dislocation.\(^{19,21}\) Regardless of the surgical approach, long-term pain relief or alteration in the natural progression of osteoarthritis require longer-term follow-up studies. (DVD 39.1)

Arthroscopy Combined With Proximal Femoral and Periacetabular Procedures
Hip arthroscopy can be used as an adjunct to reconstructive osteotomy. Although symptomatic structural deformities are commonly associated with intra-articular abnormalities,
ties, most osteotomies are extra-articular, and often they do not correct associated intra-articular abnormalities. A symptomatic acetabular labral tear or chondral flap in a patient with underlying developmental dysplasia of the hip is commonly treated with hip arthroscopy and combined osteotomy. Unstable intra-articular tissues are treated arthroscopically, and a periacetabular osteotomy is performed during the same surgery, with the patient supine. Patients with major structural deformities and associated intra-articular disease have achieved encouraging symptom relief.

Labral Tears and Repair Techniques

The acetabular labrum is a triangular band of fibrocartilage attached to the base of the acetabular rim. The labrum provides structural resistance to lateral motion of the femoral head within the acetabulum, enhances joint stability, and preserves joint congruity. Like the meniscus, it distributes synovial fluid and provides proprioceptive feedback.

Disruption of the labral structure alters the biomechanical properties of the joint. Whether labral tears lead to degenerative joint disease has yet to be determined. They also may contribute to the progression of osteoarthritis. Such findings have led to increased interest in labral repair indications and techniques.

The forces acting on a hip with a torn labrum often cause groin or deep lateral pain during sports activity. The symptoms also can include buckling, clicking, catching, and locking. The most commonly reported cause of a traumatic labral tear is an externally applied force to a hyperextended and externally rotated hip, although a specific inciting event often cannot be identified. Degenerative tears also can result from FAI, which typically overload the anterosuperior labrum, leading to attritional tears.

Lage and associates have described an arthroscopic classification of labral tears. Radial flap tears were found to be the most common type, followed by radial fibrillated, longitudinal peripheral, and excessively mobile tears. Degenerative tears were classified based on their location and extent, which are correlated with the extent of degenerative and erosive change. These articular lesions are most often located at the labrochondral junction.

Labral tears caused by trauma usually are isolated in one quadrant based on the direction of trauma, and arthroscopic repair may be possible. Recurrent torsional maneuvers subject the anterior portion of the articular-labral junction to recurrent microtrauma and tears. Pivoting or twisting sports activity appears to create a predisposition to these injury patterns.

The clinical examination of patients with a labral tear has historically been difficult. Some studies failed to find a direct correlation between specific maneuvers and labral injuries. However, a positive Thomas test (in which bilateral hip flexion is followed by abduction and extension of the involved hip, producing pain and a palpable or audible click), was found to be correlated with surgical pathology. In the proposed McCarthy test, both hips are flexed, while the affected
Figure 4 A fluoroscopic image confirming the position of the drill before anchor insertion. It is critical to ensure that the drill diverges from the joint.

Figure 5 An endoscopic view of the suture anchor in place after labral repair in the right hip, taken from the anterolateral portal. The femoral head is located to the right of the image. A fluoroscopic image of drill placement is shown (inset).

hip is extended first in external rotation and then in internal rotation. Hip extension in internal rotation causes stress on the anterior labrum, and extension with external rotation elicits posterior symptoms.30 The anterior and posterior impingement tests also are commonly used to evaluate for anterolateral and posterolateral rim pathology.

Although radiographic findings are often unremarkable, specific attention should be given to the anterolateral and superior femoral head-neck junction and the acetabulum for evidence of FAI.3 Contrast-enhanced magnetic resonance arthrography has been shown to be more sensitive than standard MRI for detecting intra-articular lesions of the hip.33,37

The decision to proceed with surgical intervention should be based on refractory pain or mechanical symptoms. Although most labral tears are treated by débridement, some can be repaired arthroscopically. Peterson and associates38 studied the blood supply to the labrum and found that blood vessels enter the labrum from the adjacent joint capsule. Vascularity was detected only in the peripheral one third of the labrum; the inner two thirds of the labrum were avascular. Thus, peripheral tears, which are relatively uncommon, appear to have healing potential, and repair should be considered. McCarthy and associates reported on 436 consecutive hip arthroscopies, of which 261 revealed labral tears. All of the labral tears were located at the articular junction and were not considered ideal for repair.29,30 Many of these articular-side detachments may have had a deep extension to, but not through, the vascular periphery of the labrum. Creating a bleeding bony bed beneath the tear may be analogous to creating a red-white healing zone to promote labral healing.

Routine anterior and anterolateral portals can be used in arthroscopic labral repair, as well as an accessory midanterior portal located halfway between the anterior and anterolateral portals and about 2 cm distal to them.39 Alternatively, the anterior portal may be 1 to 2 cm inferior to the usual location to allow an appropriate angle for anchor placement. To prepare for the repair, a standard débridement is performed, similar to that used in the shoulder. Sometimes the periphery of the labrum can be detached through the area of undersurface tearing, allowing acetabular rim preparation and ease of anchor placement. Anchor positioning to avoid chondral injury is critical with respect to the femoral head (when the anchor is delivered) and acetabular penetration. Endoscopic and fluoroscopic evaluation can confirm appropriate anchor placement (Figure 4). The options for repair include the use of traditional suture anchors with arthroscopic knot tying, and, more recently, the use of knotless anchors (Figure 5).

Good short-term outcomes have been reported after arthroscopic labral repair.40,41 Longer-term studies are available only for open techniques, and they support the value of labral repair.2 When indicated, labral repair should be considered to alleviate symptoms and prevent or delay the development of degenerative changes.

Snapping Hip

A benign, painless snapping hip (coxa saltans) is common among athletes. Symptomatic snapping with debilitating pain often occurs in dancers, gymnasts, and runners. The cause of the snapping can be internal or external. Several intra-articular conditions, including labral tears, loose bodies, and synovial chondromatosis, may be experienced as hip snapping.42-44

The iliotibial band is under tension throughout the hip's range of motion and is the most common external source of hip snapping. It lies posterior to the greater trochanter as the hip is extended and moves anteriorly with flexion. In some patients, a thickened posterior portion of the iliotibial band can snap over the
The iliopsoas (a confluence of the iliacus and the psoas muscles) is the most common internal source of snapping. Internal snapping can result from an anteromedial bony prominence adjacent to the lesser trochanter, over which the tendinous portion of the muscle passes before its insertion. Other reported mechanisms include the iliopectineal eminence, a prominent head-neck junction, or a prominent acetabular rim, which can be associated with FAI. Internal snapping associated with pincer impingement and a labral tear has been called triple impingement. The iliopsoas bursa also can become inflamed and lead to painful snapping. With flexion, abduction, and external rotation, the tendinous portion of the iliopsoas lies lateral to the anterior aspect of the femoral head. Snapping results when the iliopsoas moves into a more medial position with extension, adduction, and internal rotation.

The patient's description of the location of the snapping is key to determining its source. Internal snapping is felt deep in the groin or anterior hip, and external snapping is felt over the greater trochanter. Some patients report feeling instability or a dislocating hip as a result of the mechanical snap. Clinical examination usually is straightforward, and external snapping is obvious. Internal snapping is best evaluated with the patient supine. The diagnosis is confirmed by pressure applied over the tendon at the inferior margin of the inguinal ligament, which should obliterate the snapping.

Imaging studies, including radiographs, are important to rule out significant bony involvement, such as FAI or a bony prominence at the lesser trochanter, although only dynamic ultrasonography is usually revealing. Bursography or tenography may be necessary to establish the diagnosis.

Most snapping, whether internal or external, is benign. Stretching exercises, physical therapy, and judicious use of corticosteroids have been shown to be successful in treating most patients. If the symptoms are not resolved with therapy and injections, surgical intervention is indicated. Internal snapping procedures release or fractionally lengthen the iliopsoas tendon to decrease the snapping and pain. The procedure was found to be successful using an open or arthroscopic approach. Arthroscopic release can be performed through the lesser trochanteric bursa, the peripheral compartment, or the central compartment (Figure 6). The tendinous portion of the iliopsoas is released using an electrocautery device and leaving the overlying muscle belly intact. Symptomatic heterotopic bone may form after surgery, although a postsurgical course of anti-inflammatory drugs can reduce the risk.

The treatment of external snapping involves releasing or lengthening the iliotibial band, or both, using an open or arthroscopic approach. The endoscopic technique is most commonly used with the patient in the lateral position, although it can be performed with the patient supine to accommodate a concomitant hip arthroscopy procedure. With the patient in the lateral-
Figure 7 The position of the superior and inferior trochanteric portals for endoscopic iliobial band release. The portals are approximately 2 cm proximal to the prominence of the greater trochanter and 2 cm distal to the inferior prominence of the trochanter.

al position, superior and inferior trochanteric portals are established (Figure 7). The endoscopic procedure begins lateral to the iliobial band with creation of a window directly over the trochanteric prominence using an electrocautery device (Figure 8). When the prominence of the trochanter is exposed, a bursectomy is performed to clear all reactive tissue and any bony prominences. The peritrochanteric space should be evaluated, and gluteus medius or minimus insertion disruptions should be treated.53

Hip Instability

Hip instability can have a traumatic or atraumatic origin. The most common traumatic mechanism of hip dislocation is a motor vehicle crash in which the patient’s knees hit the dashboard. During athletic activity, a forward fall onto a knee while the hip was flexed or a blow from behind while the athlete was down on all four limbs can also result in hip subluxation or dislocation.54,55 Atraumatic instability is more subtle and can be associated with hypermobility of the hip joint caused by repetitive overuse or inherent capsular laxity resulting in rotational microinstability. This condition may be more severe in patients with generalized ligamentous laxity or, in the extreme form, with a connective tissue disorder such as Marfan syndrome or Ehlers-Danlos syndrome.43,56,57 Atraumatic instability also can be caused by osseous anatomic abnormality on either the acetabular or femoral side.57,58

The diagnosis of a hip dislocation usually is clear. However, hip subluxation can be quite subtle and can occur after seemingly minimal trauma.59-62 Atraumatic hip instability is even more difficult to diagnose. Because the differential diagnosis of hip pain is broad, taking an accurate patient history is critical. Any overuse activity with repetitive stress, such as figure skating, golf, football, baseball, martial arts, ballet, or gymnastics, can injure the iliobial ligament or labrum and alter the balance of forces in the hip. These abnormal forces increase tension and microinstability on the anterior joint capsule and can lead to capsular redundancy, labral injury and impingement, and neck impingement at high flexion angles.56,63 On physical examination, patients usually experience anterior hip pain in the prone position, with passive hip extension and external rotation. These forces can alter dynamic stabilizers such as the iliopsoas, leading to psoas and flexion contracture, internal coxa saltans,43 and pain in the low back and sacroiliac joint.

For any diagnosis of instability, AP and lateral radiographs are required. Judet oblique radiographs are used to further evaluate the acetabulum for fractures, and fine-cut CT through the acetabulum also is typically required. MRI is critical in evaluating both traumatic and atraumatic instability. In traumatic posterior hip subluxation or dislocation, the classic MRI findings include a posterior acetabular lip fracture, iliobial ligament disruption, and hemorrhage.55,64 (Figure 9). MRI should be performed approximately 6 weeks after a traumatic hip injury.
to detect osteonecrosis. MRI is useful in detecting subtle derangements in capsulolabral structures in a chronic atraumatic injury.

The initial treatment of a hip dislocation focuses on urgent concentric reduction; the secondary phase focuses on definitive care. The reported incidence of osteonecrosis after hip dislocation ranges from 1% to 17%. Posttraumatic arthritis and persistent capsular laxity or instability can also occur. The risk of osteonecrosis is diminished if closed reduction is performed within 6 hours of the initial injury. A dislocation without associated fracture or with only a small acetabular rim fracture can be treated nonsurgically. Surgical treatment is warranted if significant osseous injuries or incarcerated bony fragments are present or if the initial reduction was nonconcentric. Surgical reconstruction of an associated acetabular injury is necessary only for a displaced fracture or a nondisplaced injury involving 20% to 40% of the weight-bearing zone of the acetabulum to allow early motion and ambulation with a stable and congruent joint.

Posterior hip subluxation must be promptly diagnosed using MRI. Immediate aspiration is recommended if a large effusion is detected, and large cartilaginous loose bodies floating in the central and peripheral compartments may require arthroscopic removal. Hip arthroscopy can be used as an adjuvant to open surgery to treat femoral head pathology, chondral injuries, loose bodies, ligamentum teres injuries, and labral pathology. Figure 10 outlines a general treatment algorithm for traumatic hip dislocations and subluxations.

Atraumatic instability is difficult to assess, define, and treat, and treatment strategies are still developing. As diagnostic and therapeutic capabilities improve, atraumatic instability increasingly is recognized as a distinct entity. In a patient whose physical examination, history, and imaging studies are consistent with capsulolabral injury and instability,
Figure 11 The two insertion sites of the gluteus medius. The thickest portion of the tendon inserts into the superoposterior facet of the greater trochanter in a circular footprint pattern, with a second, broad insertion on the lateral facet.

Peritrochanteric Disorders

Lateral hip pain, also called greater trochanteric pain syndrome, is characterized by a chronic, intermittent aching pain over the lateral aspect of the hip. The pain is caused by bursal inflammation in the peritrochanteric space from either extra-articular or intra-articular derangements. Possible intra-articular causes must be evaluated first. The common extra-articular causes include occult abductor pathology (tears of the gluteus medius or minimus) and an external snapping hip (coxa saltans). Greater trochanteric pain syndrome is traditionally described as inflammation of the trochanteric bursa that predominantly lies over the posterior facet of the trochanter. The evidence increasingly suggests that persistent pain and weakness in this region results from primary deficiencies in the tendon attachments of the gluteus medius or minimus. Like rotator cuff tears, these abductor tears can be either traumatic or degenerative and are commonly found in older female patients.

The peritrochanteric space is the region between the greater trochanter and the iliotibial band. It is comparable to the subacromial space in the shoulder. The greater trochanter has four distinct facets (anterior, lateral, superoposterior, and posterior), three of which have independent tendon insertions. The gluteus medius has two distinct insertion sites. The thickest portion of the tendon inserts onto the superoposterior facet in a circular footprint pattern, and a second, broad-based insertion is on the lateral facet (Figure 11). The gluteus minimus inserts primarily on the anterior facet deep to the medius and functions as a stabilizing force to the hip joint. A bald spot lies between the insertion sites of the gluteus minimus and the lateral facet of the gluteus medius. The greater trochanteric bursa overlies the posterior facet, which is devoid of any discreet tendon insertion.

Direct manual palpation is critical in determining the etiology of lateral hip pain. Usually intra-articular referred pain is not elicited by palpation but by joint motion, and peritrochanteric disorders are painful with manual pressure. A proper evaluation of the peritrochanteric space begins with palpation of the gluteus maximus and the specific abductor insertions. Manual muscle strength testing should be performed with the hip in flexion, neutral, and extension to assess the tensor fascia lata, gluteus medius, and gluteus maximus, respectively.

Abductor contractures can be assessed using the Ober test, which also should be performed with the hip in flexion, neutral, and extension. The classic Ober test is performed in extension to evaluate ten-
sion across the tensor fascia lata. The imaging studies for diagnosing recalcitrant lateral hip pain are similar to those used for atraumatic instability. Plain radiography is initially used. MRI is necessary for a patient with a presumed diagnosis of trochanteric bursitis or abductor dysfunction who has not responded to nonsurgical treatment. MRI may reveal a previously unappreciated tear of the gluteus medius, which has been well described in the literature as a possible cause of greater trochanteric pain syndrome. In a patient with a snapping hip (coxa saltans), dynamic ultrasonography can confirm the diagnosis.

Physical therapy and judicious corticosteroid and local anesthetic injections are the mainstays for diagnosing and treating trochanteric bursitis. Numerous surgical procedures have been described for use after unsuccessful nonsurgical treatment. Arthroscopic treatment of extra-articular lateral hip pathology has recently been described for recalcitrant trochanteric bursitis; as many as 85% of patients had a good or excellent result after 1 to 5 years.

Trochanteric bursitis that is refractory after multiple corticosteroid injections often reflects an undiagnosed tear of the gluteus medius or minimus tendon. Tears of the gluteus medius and minimus encountered during open surgery for refractory trochanteric bursitis were described as rotator cuff tears of the hip. Like the rotator cuff, the abductors can develop calcific tendinitis. Although the incidence of symptomatic abductor tears is not well defined, abductor pathology has been identified in as many of 11% of patients with femoral neck fracture and 20% of patients after total hip arthroplasty. The use of MRI has improved the diagnosis of tears of the gluteus medius tendon. Open surgery has been the mainstay of treatment for tears of the gluteus medius and minimus tendons. Arthroscopic techniques have been described for excision of calcific tendinitis of the gluteus medius and minimus tendons, and an endoscopic repair with suture anchors has been described for focal tears of the gluteus medius and minimus tendons (Figure 12). External snapping hip or coxa saltans is another pathoanatomic entity in the peritrochanteric space.

Summary
Disorders of the hip joint are better understood as a result of arthroscopic and open procedures developed by specialists in sports medicine and reconstruction. Future cadaver and biomechanical studies and well-designed clinical outcomes research will further define the indications for open and arthroscopic procedures of the hip.

References
4. Philippon MJ, Schenker ML: Arthroscopy for the treatment of femoroacetabular impingement in the ath-
434 AAOS Instructional Course Lectures, Volume 58, 2009

Sports Medicine

